Web Site Javascript – Part of the ISDV131 Internet and Web Technology Course

[image: image1.wmf]2

© 2003 Martin Francis

Agenda

•

JavaScript and Java

•

Object Oriented Programming

•

A very simple JavaScript program

•

Web Browser JavaScript

•

Variables and Arrays

•

Increment, Decrement, and loops

•

Functions

•

Operators

•

If ... Then … Else

•

Switch

•

Regular Expressions

•

The Document Object Model

[image: image2.wmf]3

© 2003 Martin Francis

Action!

(Go JavaScript!)

JavaScript? NOT JAVA!

Developed by

Netscape

 from their re-branded “Live Script”.

JavaScript programs can be included

directly in HTML code

,

unlike Java which requires independent applications files.

Uses

:

•

 Status information and extra details.

•

 Interactive graphics.

•

 Form checking prior to sending data.

•

 Dynamic generation of page content.

•

 Simple web applications (e.g. currency conversion).

Course Objectives:

This course is designed for those familiar enough with HTML programming to be able to create a simple page from scratch using a text editor such as notepad, but is now looking to move beyond the confines of producing a static web page to create JavaScript enabled pages. At the end of the course, the student will have a good understanding of the JavaScript programming language, a solid hold on the concept of the Document Object Model, and be armed with a range of techniques which can readily used in the creation of web client-based applications.

[image: image3.wmf]4

© 2003 Martin Francis

JavaScript:

•

You can write JavaScript with Notepad and

test it on an ordinary web browser - no

compiler or other tools are needed;

•

JavaScript can be run on some web servers;

•

There are plenty of resources and courses to

help you learn JavaScript;

•

Learn JavaScript well, and you should get on

a lot better with other tool languages;

•

The JavaScript engine is now public domain

and the language has been extended for use

in other applications

JavaScript?

When the first web browsers began to crawl into the daylight back in the early 1990’s, none of them could do anything more exciting than display static HTML web pages fetched from a web server somewhere. Slowly, features were added to create the illusion of a little more movement (animated GIF graphics files and the notorious <BLINK> HTML tags for instance). But the fact remained that if you wanted a page to change in response to some user interaction, a message had to be sent up the wire to the web server, the previous page had to be dropped, and all-new content supplied by the web server sent to replace it. Simple ‘whack-a-mole’ type games were possible with such server interaction, but painfully slow.

Up until 1991, there were just two main types of programming language: Compiled (e.g. C++) and Interpreted (e.g. BASIC). Any Compiled program is written in code that humans can read, but must be turned in Machine Code (unintelligible to us) before it can be shipped and then run. Since PCs, Macs and others have different CPUs, any program written in C++ must be re-compiled (and tested) into different forms of machine code for use on each platform they are to be run. Interpreted programs however remain in a human readable form, and are interpreted each time they are run by the actual physical machine running them - with big processing overheads.

In 1991 Sun released their ‘portable’ code system - Java. Programs written in Java and then compiled ONCE into Byte Code could be run on any platform which supported a Java Virtual Machine - pretty soon virtually all of them. In 1994 Netscape and Sun introduced browsers which supported Java code running on web pages, and the door to client-side code had been well and truly kicked open. Please note, Java will not be covered in this course.

JavaScript (an Interpreted language) was originally designed by Netscape as a Interface to allow less experienced web coders to control off-the-shelf Java applets in their, web pages without having to learn to code in Java themselves. However for the first couple of years, just about the only thing JavaScript was used for was to swap one image for another when a mouse pointer was moved over it. ‘Cool’ or ‘neat’ undoubtedly, but a bit like driving a Ferrari down to the shops.

[image: image4.wmf]5

© 2003 Martin Francis

Object Properties:

JavaScript is an Object Oriented language

Objects in the JavaScript world have properties to “hook” on to.

It has:

•

 Fish

.

color

•

Fish

.

size

THIS

… is an actual

instance

 of a Fish.

 (His name is

James

.)

 James

=new

Fish()

James.

color

="Purple"; James.

size

="250"

There is a

class

 of

object

 called a

Fish

.

The Good News
Besides being extremely widely used and highly sought after in industry, JavaScript is actually very easy to learn (more so than C++ or Java), and, unlike virtually every other programming language ever written, you don’t need ANY special tools to program with it. Not even a compiler program (essential for almost every other programming language). The interpreter required to run it is built into your web browser, so you already have one. And so does everyone else!

Although JavaScript was originally developed by Netscape for use in Web Browsers, Netscape quickly developed a web server-based variant on the technology to provide their Enterprise Server family with similar dynamic page generating capability to that seen in Microsoft’s VB based IIS web servers. Following the decision of Netscape to place the entire source code for their web browser technologies into the public domain, one or two other applications have emerged which use the basic engine provided and build on it - one example is the web performance testing tool WebLoad.

And the Bad News?
The biggest problem you will face as a JavaScript programmer is the fact that, although a ‘Standard’ has been developed describing how the language should work with any web browser, whoever produced it (the ECMA262 Standard approved in 1998 as an ISO standard), there are differences - some of them big ones. We’ll get onto that later in the course.

Typical, there’s always a catch!

If you write your code well, and don’t try anything too weird, you ought to be able to do just about anything and make it work well on Internet Explorer or Netscape Navigator. We will be considering a complete database application written entirely in JavaScript which runs like a dream on IE4.0 or above and NS4.0 and above with no real headaches. And believe me, you haven’t seen anything yet!

[image: image5.wmf]6

© 2003 Martin Francis

Object Methods:

Objects can have Methods:

Methods are program code included as part of the object which

can take parameters when (and if) the method functions are

called.

Simon

=new

Fish()

; Simon.

color

="Blue"; Simon.

size

="10"

Simon.

swim(20)

Sally

=new

Fish()

; Sally

.color

="Green"; Sally

.size

="15"

Sally.

swim(200)

Objects and Properties
JavaScript is an Object Oriented language… this means that it works in terms of “objects”, which have a defined structure and can contain data and program code in one neat little bundle. Once you have a template for an object (called a class), you can stamp out millions of them like Barbie dolls on an assembly line, and then manipulate or affect each one individually. Having created an actual named instance of an object, either based on an existing class already defined in the JavaScript language itself, or built using an entirely new class of your own creation, properties of that object (data if you like) can be accessed by using “Dot Notation”. Any routine which causes a new object to be built is called a constructor. Constructors can be built to take parameters which can affect how the object is made, or be used to set initial values for its properties.

Most objects in a web document (images, heading, links, and even the actual web browser itself) have properties which can be used by JavaScript programs to read the state of things or affect or manipulate them in some way. There are classes built in as standard in JavaScript (such as “Image”), and more are introduced with every release of the language. You can also create your own object classes as well, and we will look at this later.

Let’s say that we want to create an instance of a “Fish” object called James:
Note: the brackets would contain additional parameters if the constructor needed them.
James=new Fish()

Let us assume that in this case, “Fish” objects have parameters: color, size and speed:
Having created a new instance of the Fish object, we can set James speed property to 20:
James.speed="20"
…or we can read the existing value into another variable without affecting it:
a==James.speed
Note: You need the double equals == to TEST rather than SET or you will end up setting ”James.speed” to the value (if any) already contained in the variable “a”.

[image: image6.wmf]7

© 2003 Martin Francis

Exercise 3(a)

Fill in the gaps

:

JavaScript is an Object Oriented language created by

Microsoft

 /

Sun

 /

Netscape

 /

Borland

in late 1995 and

is

an interpreted

 /

a compiled

 language. This means

that humans

can

 /

cannot

 read it on a downloaded web

page. Java by contrast has to be

interpreted

 /

compiled

 into

object / assembly / byte / source

 code

which means than it

can / cannot

 be read by humans

without specialist tools once deployed on a web page.

JavaScript Methods

We hinted at this on the last page with references to the fact that JavaScript objects can contain chunks of program code, not just data. If you call a method you will normally pass one or more parameters for it to operate on. In the example on the slide we can call the method in a Fish object to make it swim, with a delay in milliseconds between each swimming stroke, so we see that Simon swims much more quickly than Sally, though they use exactly the same software within the objects to do this. This makes code more easy to reuse and also makes it much easier to read and understand.

More on JavaScript Constructors

Depending on the function you write or use to create an actual instance of an object, the actual call to create the object MAY or MAY NOT require you to give parameters when you call it. We could re-write the Fish class to take parameters when the call comes to create a new instance of a Fish object:

So instead of doing THIS:
Sally=new Fish(); Sally.color=“Green”; Sally.size=“15”
We COULD re-write the Fish class function to take two parameters in the constructor:
Sally=new Fish(“Green”, “15”);

This makes the code easier to read and means that there is less to go wrong and get confused about if someone forgets to set a value for something. Our example however does NOT use parameters in the constructor, and so trying to use them without modifying the rest of the code will only cause problems.

And watch out for case sensitivity - Fish is NOT the same as fish.

[image: image7.wmf]8

© 2003 Martin Francis

Exercise 3(b)

Fill in the gaps

:

An

instance / occurrence

 of a JavaScript Object is

created by a class definition

constructor / builder /

instantiater

 which may take

properties / parameters

to affect the way an object is created. Values associated

with an object are called

properties / parameters

. An

object can include

methods / mechanisms

 which allow

external manipulation of the object through integrated

routines. Unlike HTML, JavaScript

is / is not

 case

sensitive.

Fill in the gaps:

JavaScript is an Object Oriented language created by (Microsoft, Sun, Netscape, Borland) in late 1995. It is (an interpreted, a compiled)
language. This means that humans (can, cannot) read it on a web page. Java by contrast has to be (interpreted, compiled) into (object, assembly, byte, source) code which means than it (can, cannot) be read by humans without specialist tools once deployed on a web page.

[image: image8.wmf]10

© 2003 Martin Francis

Web Browser JavaScript

javascript:alert("Hello "+prompt("Enter your name",""))

Martin

Fill in the gaps:

An (instance, occurrence) of a JavaScript Object is created by a class definition (constructor, builder, instantiator) which may take (properties, parameters) to affect the way an object is created. Values associated with an object are called (properties, parameters). An object can include (methods, mechanisms) which allow external manipulation of the object through integrated routines. Unlike HTML, JavaScript (is, is not) case sensitive.

[image: image9.png]l Froblems with tis Web page migh prevent i from being displayed properly

ot funciioning proper. I the futute, you can display this message by
double-clicking the waring icon displayed inthe staus bar.

™" lways display ths message when a page cortains erors.

Shon D>

Practical JavaScript:

What tools do you need to produce JavaScript? Good news folks - all you need is a text editor to write it and a web browser to run it! In the code shown in the slide, a JavaScript function has been inserted between HTML <script> tags which can be called later on as many times as we like. The function is called “TellMe”. JavaScript is case sensitive, so be sure to use the same capitalisation each time you refer to a function. When we built it, we decided that particular function should take a parameter- we’ll call it “msg”. The function itself is contained between the two brace symbols { … }, and here the web browser’s window.status property will be set to the value contained in the variable msg. We now have a function which we can call to set the window.status to whatever text we pass to it.

We can now use this function in several ways; we could call it like this…
<script language="JavaScript" type="text/javascript">TellMe("All loaded!")</script>
… or we can use one of the built-in event handlers to trigger the execution. The example on this slide uses the onmouseover() event to cause the function to be called whenever the mouse pointer is moved over the link. There is a corresponding onmouseout() event we could use to clear the message when the pointer is moved out of the anchored area. Note however that IE3 doesn’t recognise this second event so you will not observe its effect in these older browsers

Be careful about your use of quotes (‘) and double quotes(“) and make sure that you don’t open a clause with one kind and attempt to close it the other one! Don’t confuse JavaScript!

A JavaScript Date Example:

Place this simple routine somewhere in the body of your document to display the date (at least, according to your computer’s own built-in clock!):

<script language="JavaScript" type="text/javascript">
 document.write("Today's date is: " + new Date().toLocaleString() + "
")</script>
[image: image10.png]

Web Browser JavaScript

About two slides ago, it was stated that all you needed to write JavaScript programs was a web browser and a text editor like Notepad. Well, perhaps you are now ready for the truth. You don’t need the text editor. No, no, seriously folks, you don’t.

Open up a web browser, Internet Explorer or Netscape, it doesn’t matter which. Click in the location field and type the following:

javascript:alert("Hello "+prompt("Enter your name",""))
Now strike return. It isn’t much, it isn’t very exciting, but it does prove that you can try out simple stuff without even saving it to a file. This can be a very useful time saver

However, fresh out of the box, Internet Explorer (let’s concentrate on that one now) doesn’t give you a lot of help debugging faulty JavaScript code whether entered directly (as in the slide) or by means of a prepared HTML file containing JavaScript statements between <script> tags. Enter the following statements into the address bar as you did earlier, making sure that you start with the word javascript: in order to invoke the JavaScript interpreter

javascript:alert("Hi there
[image: image11.wmf]11

© 2003 Martin Francis

JavaScript Variables

•

Number

var a=23; alert(a + 12); // 35

var a=23; alert("" + a+12) // "2312"

Because the second example used a string, JavaScript

converted

a

 to a string automatically - this is “Casting”

•

String

var a="23"; alert(a + 12); // "2312"

var a="23"; alert(parseInt(a)+12);

// 35

In the second example we forced JavaScript to convert

the value for

a

 to an integer to allow it to be added.

var a="Classaxe"; var b = a.length;

// 8

// comment

There are two things wrong with this statement, but you won’t get any help from IE until you start asking for it. After striking return with the above code inserted in the address bar, you should see this symbol in the bottom left-hand corner of the web browser: This tells you that there in one or more errors in the code. To get more details, double-click on that symbol, to see a generic error message which still doesn’t give much away:

[image: image12.png]El testl.htm - Notepad [-1o[x]
File Edt Search Help

Click on the checkbox in that dialog and click on the Show Details button to receive more useful advice in future, including the line number and type of error. Armed with this extra help, you can now correct the two faults present in the sample given.

[image: image13.wmf]12

© 2003 Martin Francis

JavaScript Arrays

•

Array

var a = new Array();

// create the array

a[0] = "Classaxe";

// set first item

a[1] = 234;

// set next item

Array

Name

Array

Index

Element

value

Array elements can contain any type of object

numbers, strings, even other arrays if you like!

var b = a.length;

// b = 2

var b = a[0].length;

// b = 8

A variable is...
…a storage container for a piece of information. Once a variable has been defined any value may then be assigned to it, and it can be changed at any time. Until a value has been assigned a variable contains a special value, null. A variable can be used anywhere in place of the information it contains. When the program is run, the variable is substituted for the information that the variable contains. Sounds simple.

However, different types of data need different types of container. You wouldn’t carry eggs in a bin bag, and you wouldn’t carry rubbish in a egg box. When JavaScript needs to perform an operation involving two different types of variable, it may need to convert one of the variable to the same type as the other. If you add a number to a string for example, JavaScript automatically converts the number to a string first before joining them. This is called casting. Create the file below in notepad, save it and then open it in IE.
[image: image14.png]El test2.htm - Notepad [-1o[x]
File Edt Search Help

Variables are Objects!
Objects can have properties and methods.

String objects have a property called length which allows you to see how many characters are contained in them.

JavaScript has a built-in function called parseInt() which takes a String object and returns a Number object - provided that the string contents begin with a valid number.

If not, the function returns a special ​type of object called NaN - meaning Not A Number: parseInt("123 pupils") will return 123, but parseInt("a123") returns NaN

[image: image15.wmf]15

© 2003 Martin Francis

Functions in JavaScript

A function is simply a section of program code

designed to be modular and reusable.

Declaring a function:

function display(x,y)

{ for(var i=0;i<y;i++)

 document.write(x); }

Calling a function:

display("JavaScript",10);

display("OK",10);

No semicolon here or

you’ll end the function!

No semicolon here or

you will end the loop!

What is an Array?
An array is a named storage container for a set of variables, termed as elements. So, if we think of a variable as a page in which we write information, an array is like a book with many pages. To find what is written on a particular page of a certain book, you need to look at the book, turn to the right page, and read it. As with all other variables, arrays are objects.

In the first line of the slide above we declared a variable - var a. On the same line, we assigned to the variable a brand new Array() object which we created by saying “new Array()”. Imagine:

1)
Printing a label with the name of a book;

2)
Assembling the blank pages of a brand new book;

3)
Gluing the label onto the spine of the book to identify it for future reference.

How do you use an Array?

In the second line of the slide we took the array a (previously created), and accessed the first element of it. We assigned the string “Classaxe” to the first element -
Arrays in JavaScript start at 0 (not 1 as with some other languages). We then assigned to the second element the number 234. You can see here we assigned a string to one element and a number to the next - many languages would complain bitterly at this kind of treatment!

In C or Java, when you create arrays you have to state in advance how many elements they will have - JavaScript uses sparse arrays and only creates elements when they are actually used. If you create an array then assign a value to the 100th element, the previous 99 elements don’t take up any memory. You can add new elements at any time, like adding pages to a loose leaf binder.

In the last slide we saw that you could access the length property of a String to tell you how many characters it had. In this slide we see that accessing the length property of an array tells you how many elements it has, but accessing the length property of a array element which contains a string allows you count the characters contained in the element itself.

[image: image16.wmf]16

© 2003 Martin Francis

Operators

Assignments cause a value to change:

=

Assigns a value to a variable

++

Increments a number

--

Decrements a number

String, Number and Boolean operators return result:

 +

Adds numbers OR

(Number)

Concatenates strings

(String)

 !

"NOT" - Inverts Boolean

(Boolean)

Boolean Test Operators return true / false:

==

Test for Equality

(Boolean)

!=

Test for inequality

(Boolean)

 >

Greater than

(Boolean)

 <

Less than

(Boolean)

String Methods

charAt(index)
Returns the character at the given index within the string. The first character in the string is at index 0. In the example, “g” is the fourth character in “ImagoQA was here” so has an index of 3.

indexOf("text")
Searches the string object for the given text, starting at the beginning. If it finds one, the function returns the index corresponding to its start position within the string, and then stops. Otherwise it returns the value -1 to indicate that it didn’t find one.
indexOf("text",start)
The parameter start is optional but can be used to probe deeper into a string; you might use one indexOf() to find the first instance of a string, then use another starting from the value returned by the first test, plus one (since the first character in a string of length 1 is at offset 0).

lastIndexOf("text",start)
This is very similar to the indexOf() method, except that it works through the string backwards.

substring(start,end) // actually, not end, but one LESS than the end.
This method returns the sub-string starting at start and ending at the character one less than end (a bit confusing that!). If the value for start is larger than end, JavaScript simply swaps them.

toLowerCase() and toUpperCase()
These very simple methods simply convert the string to all lower or all upper case respectively.

Semicolons:
You must insert a semicolon between multiple statements on the same line, however they are recommended even if you only have one statement per line - most languages insist on this, but JavaScript ‘inserts’ them for you if you forget, though your code will run faster if it doesn’t have to.

[image: image17.wmf]17

© 2003 Martin Francis

If and else

Scope of

first test

Scope of

second test

if, else, and the concept of scope...

var a = prompt("Company?","type here");

if (a.toLowerCase()

==

"classaxe")

{ alert("Looks good so far...")

 if (a

==

"Classaxe")

 alert("Totally correct!");

 else

 alert("too bad... wrong case!");

}

else

 alert("Not even close!");

No semicolon!

Incrementing and Decrementing

One common task is to increment (add one to) or decrement (subtract one from) a variable. Since this is so often needed, you can perform the operation in JavaScript (and C++ and Java) by appending the ++ operator to the name of the variable. This causes the value for the variable to be incremented right AFTER it is next used. If ++ comes before the variable name, it is incremented BEFORE it is used. The -- operator works the same way, but decrements instead.

 var n=0; alert(n++)
// Displays "0" & increments n to 1 afterwards

var n=0; alert(++n)
// Increments n to 1 then displays new value

[image: image18.wmf]18

© 2003 Martin Francis

Switch and Case:

For efficient multiple tests:

var a = prompt("Colour?","red");

switch(a.toUpperCase()){

 case "RED": var b="#ff0000"; break;

 case "GREEN": var b="#00ff00"; break;

 case "BLUE": var b="#0000ff"; break;

 case "BLACK": var b="#000000"; break;

 default: var b="#606060"; break;

}

document.write("<font

color

='"+b+"'>Hi")

You must include a break statement after each block of code to

cause execution to resume at the end of the switch block - otherwise

odd things will happen!

var n=0; alert(--n)
// Decrements n to -1 then displays new value

Loops:
Another very common task is to execute a statement a number of times, in a loop. This operation normally involves the ++ operator which we now know all about.

The syntax is as follows:

for initialise;test;increment)
 { things to do list; }

If there’s only one item in the things to do list, you can omit the { and }.

In the code for test2.htm which you will create and test for yourselves, we don’t really need the braces, since there was only one statement in the loop.

[image: image19.wmf]19

© 2003 Martin Francis

Regular Expressions

Regular expressions are contained between two

forward slashes / /

They may include:

•

i and g options (case

i

nsensitive,

g

lobal)

•

Literal characters (including “Escaped” ones)

•

Characters and negated characters

•

Repetition and Alternation

Examples:

/

color

=\"[0-9a-

zA

-Z#]+"/

ig

\\ find all colours

/

color

=\"[^"]+"/i

\\ find one colour

/

color

=\"(red|#ff0000)"/

\\ find red or #ff0000

/

color

=\"#[0-9a-f]{6}"/

ig

\\ find all

hex

 colours

Functions in JavaScript

Functions allow us to create modular and maintainable programs. A function normally contains some program code which is executed when the function is “called”. Once a function is present in a script, it may be called and executed at any time. You can define your function to pass parameters to the code within the function, and the function itself can return data directly to the part of the program which called it. In the slide above we see a function called display(). The function itself expects to be called with two parameters in place, and when called, these two parameters are used within the function to affect the way the function behaves. The example here expects to take something to display - a number or a string. That value, known internally as x, will be written out to the web document a number of times as governed by the second parameter, known internally as y.

The return Keyword
Although the function in the slide performs a write() to the web document, it doesn’t technically return anything to the line of code which called it - it just ends at the end of its block and control returns to the main program. The keyword return can be used at any time within a function to return control to the caller. What is really useful is that return may take a variable or other object as a parameter which is then returned to the function’s caller. For example:
function highlight(what)
 return "" + what + ""; // Don’t need {} for one statement

document.write(highlight("hi there"));// Writes "Hi There"
Remember, just defining a function doesn’t mean it will ever be executed. To execute the code contained within, the function must be called by name. Once a function is defined and included in your code, you can use it as many times as you like to make your scripts smaller, simpler and more maintainable: if you wanted to display all “highlighted” text in bold italics, one simple change to your code and two hundred statements using this code could be changed at once.

[image: image20.wmf]20

© 2003 Martin Francis

Regular Expression Patterns

Character Classes:

[01234]

// matches one character 0-4

[0-47]

// matches one character 0-4, or 7

Inverted Character Classes:

[^ £$\?]

// match one character which

isn’t

// a space, £, $ or ?

Alternation:

red|blue|green

// match red, blue or green

Repetition:

[0-9a-

fA

-F]?

// match zero or one hex characters:

[0-9a-

fA

-F]+

// match one or more hex characters

[0-9a-

fA

-F]*

// match zero or more hex characters

[0-9a-

fA

-F]{4}

// match exactly 4 hex characters

[0-9a-

fA

-F]{4,}

// match 4 or more hex characters

[0-9a-

fA

-F]{4,6}

// match 4 to 6 hex characters

Operators in JavaScript

Here’s a longer list of operators in JavaScript including some new ones:

Access Operators:
 .
To access properties or methods:
window.status = "Greetings”;

[]
To specify index for an Array element
var a[4] = 100;
()
To pass parameter(s) to a function
var b = a.charAt(3);

 ,
To pass multiple values
var b = a.substring(1,3);

Assignments:
 =
To assign a value:
var a = "ImagoQA";
++
Increments a value
alert(n++);

--
Decrements a value
alert(--n);

+=
Adds value on the right to the left
a += " Software Testing";

String and Number Operators:
 +
Joins (“concatenates”) strings
var a = "" + message + "";
Note: If the value in message was a number, this would be cast (converted) to a string.
 +
Adds two numbers
var a = 23+12;

 -
Subtracts two numbers
var a = 23-12;

 /
Divides two numbers
var a = 1/2;

 *
Multiplies two numbers
var a = 23.95*0.175;

 %
Finds remainder (Modulo)
var a = 13%6; // equals 1

Test Operators: (Results are always Boolean, i.e. true or false)
==
Tests for equality
if (a=="IQA") { alert("correct"); }

!=
Tests for inequality
if (a!="IQA") { alert("wrong"); }

 >
Tests for “Greater Than”
if (a > 100) { alert("big"); }

 <
Tests for “Less Than”
if (a < 100) { alert("small"); }

Logical Operators:
 !
Inverts a Boolean value
if !(test_result) { alert("No"); }

[image: image21.wmf]21

© 2003 Martin Francis

Using Regular Expressions

2 letters,

range A-Z

1 or more

digits, 0-9

1 letter,

range A-Z

“Global” search (g)

Case insensitive (i)

Suppose we wanted to extract NI numbers from

this HTML code, to review results from a server:

var a="<

li

>NP81110105A - A Abram<

/

li

>"+

 "<

li

>AJ71029990r - B Brent<

/

li

>"+

 "<

li

>RP00110239E - C Camel<

/

li

>";

var

ni

=

/

[A-Z]{2}[0-9]+[A-Z]

/

gi

;

var b=a.match(

ni

);

for (var i=0; i < b.length; i++)

 alert(i + "=" + b[i]);

if and else
An if statement comprises of the word if followed by a test which is enclosed in brackets. Depending upon the result of the test, i.e. whether the result equates to the Boolean values true or false, the code which follows will or won’t be executed.

Where an else statement appears after conditional code, any code following that block will be executed only if the previous test equated to false.

Block Scope
If you want several statements in JavaScript to be considered as a single block, you group them together by using { and }. We saw this used earlier in our c:\test2.htm file, although we stated there that we didn’t really need the braces since there was only one statement within the block.
The example in the slide above:

1)
Prompts the user for an input

2)
Checks that input contains the right letters (by converting it to lowercase prior to the test).

3)
If the result is true:
a) an alert message is shown
b) a second, more precise test follows (see 5)

4)
Otherwise, another alert message is displayed stating that there was a total failure and the program ends.

5)
If the earlier test at 2) was true,
a) a test is made on the string for correct case:
b) if true, a “Totally correct!” message is displayed
c) if false, a “too bad… wrong case!” message is shown.

To save unnecessary typing, take your c:\test2.htm file, strip out the script contents and replace them with the script shown in the slide above. Save it as c:\test3.htm and then test it.
[image: image22.wmf]9

© 2003 Martin Francis

An Example of JavaScript:

Our first JavaScript program:

Place this somewhere in the

<HEAD>

 section so it loads before the

body is displayed (and attempts to call the routine!)

<

script language="JavaScript" type="text/javascript">

 function

TellMe

(

msg

){

 window.status=msg;

return true; }

</script>

Now place this code somewhere in the

<BODY>

 section:

<a href="http://www.

classaxe

.com"

onmouseover="

TellMe

('Greetings!');return true;"><u>Look!</u>

When the page is shown, moving the mouse over the hyperlink

Look!

 causes the message to be displayed in the status bar on

the bottom left of the screen

Switch and Case Statements:
As we have seen, the if and else commands provide a very flexible way to test for multiple possibilities for a value. However, if all that is required is to test a single value to see if it matches an number of similar possibilities, there exists another method of achieving the same ends. The switch and case construct provides a more efficient way to perform such tests. Not only is the code shorter and simpler, it is also much less confusing to read, and also executes slightly faster because a value is actually only read and checked once.

To encode the example in the slide using if and else we would see something like this:

[image: image23.wmf]13

© 2003 Martin Francis

JavaScript String Methods

String methods:

var a = "Classaxe was here";

var b = a.charAt(2);

// b = "a"

var b = a.indexOf("a");

// b = 2

var b = a.indexOf("a",4);

// b = 5

var b = a.lastIndexOf("a");

// b = 10

var b = a.substring(1,3);

// b = "la"

var b = a.toLowerCase();

// b = "classaxe was here"

var b = a.toUpperCase();

// b = "CLASSAXE WAS HERE"

Clearly the code produced by the switch case construct is easier to read and maintain where large numbers of similar tests are to be used.

Replace the script section of your c:\test3.htm file with the example in the slide and save it as c:\test4.htm and test it in a web browser. What happens when you type in Orange? Why?
[image: image24.wmf]© 2003 Martin Francis

JavaScript

JavaScript

JavaScript

Web Site

Martin Francis

(Internet Consultant)

Advanced WebLoad Testing

Regular Expressions:
Earlier, we looked at various string methods to perform simple searches in strings which work well when the precise format of the substring is known in advance. Often we need to perform much more complex search operations. JavaScript supports Regular Expression objects (used also in C++, Perl and Java) to provide much more powerful search (and replace) functionality for our scripts. A Regular Expression is created when a value is enclosed by two forward slashes.

Two optional parameters may follow the final / in a regular expression: g means global search and i means case insensitive. Without the g option, only the first item matching a regular expression will be dealt with. Without the i option, any items which would match but have the wrong case (e.g. Font instead of font), will be rejected.
Literal Characters:

A simple regular expression may be constructed containing a simple series of letters to find the number of times the word and appears in a string:

var findAnd = /and/g; var test = "We have sand and sun and sea”;
alert ("The word and was found "+test.match(findAnd).length+" times"); What does this do? Why? How might you alter it?

Escape Characters in Regular Expressions:

You will often need to search for characters such as /, [,], and + using Regular Expressions. Since these characters all have special significance in Regular Expression constructors, if you want to include any of them as search text, you must prefix each with a \ to “escape” the character. If you escape a character which doesn’t need escaping, the escape is safely ignored.
To use any of the following characters as literals (i.e. just as they are) in a regular expression you need to prefix them with the \ escape character:

/
\
.
*
+
?
|
(
)
[
]
{
}
(Incidentally, if you wanted to include " in a String enclosed by "", you’d escape that too.)

[image: image25.wmf]14

© 2003 Martin Francis

++,--, and Loops

Incrementing and Decrementing:

var n = 0;

// Assigned n=0 (NO QUOTES!)

alert(n++);

// value shown is 0

alert(n);

// value shown is 1

var n = 10;

// Assigned n=10

alert(--n);

// value shown is 9

alert(n);

// value shown is 9

Loops:

for (var n=0; n<5; n++){ // Loop

 alert("counter=" + n);

 // Do 5 times

}

Character Classes:

Individual characters can be placed within [] to form a Character Class. A Character Class matches any one character contained within it - e.g. [0-9a-fA-F] will match any hexadecimal character. A Negated Character Class is formed by placing a ^ (caret) within the square brackets, and listing prohibited characters immediately after it, for instance [^"'] will match any character apart from a single or double quote.

Alternation:

We have seen how character classes can be used to find a range of alternative (single) characters. If we wanted to specify alternative words or phrases, we can separate these by means of the pipe symbol | (top-right on a US keyboard).

/red|bluey green|grey/
// finds red OR bluey green OR grey

Repetition:

With what we have learned so far, if you wanted to find a six digit hexadecimal number you could use: [0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F]

However this isn’t terribly efficient. Nor is it very flexible. Suppose you wanted to find 4-6 hex characters with an optional # at the front? To match the preceding character or character class a variable number of times we can use the following:

[0-9a-fA-F]?

// matches zero or one hex characters
[0-9a-fA-F]+

// matches one or more hex characters
[0-9a-fA-F]*

// matches zero or more hex characters
[0-9a-fA-F]{4}

// matches exactly 4 hex characters
[0-9a-fA-F]{4,}
// matches 4 or more hex characters
[0-9a-fA-F]{4,6}
// matches between 4 and 6 hex characters
[image: image26.wmf]22

© 2003 Martin Francis

Combining Regular Expressions

Find NI Numbers

minus last letter

Join Array to form

String, # as a delimiter

Replace NI-letter with nothing

Split String into an Array, # as a delimiter

String methods using regular expressions:

var a="<

li

>NP81110105A - A Abram<

/

li

>"+

 "<

li

>AJ71029990r - B Brent<

/

li

>"+

 "<

li

>RP00110239E - C Camel<

/

li

>";

var

ni

 =

/

[A-Z]{2}[0-9]+[A-Z]

/

gi

;

var ni2=

/

[A-Z]{2}[0-9]+

/

gi

;

var

b=a.match(

ni

).join("#").

replace(ni2,"").

split("#");

for (var i=0; i < b.length; i++)

 alert(i + "=" + b[i]);

Pattern Matching with Regular Expressions:
In the slide we see a sample output string from a web application which lists National Insurance numbers against members of staff. For simplicity, this sample output has been copied into our test code and we will now execute a Regular Expression match against it.

The Regular Expression shown finds instances of a string comprising of 2 characters in the range A-Z, then one or more digits, then one letter from A-Z. We specified g and i as options; had we not specified g, we would only find the first item matching the criteria, and if we omitted the i, the search would have missed the second list entry, since that ends with a lower case letter.

More String Methods:
Earlier we looked at a number of String methods. There were two very useful string class methods which we didn’t examine then, because they didn’t make much sense before we examined Regular Expressions.

The match() method takes a single parameter, a Regular Expression, which causes the string executing the match method to search through the text for matches of the criteria included in the regular expression. The result of this is an array of matched items. If the g option was not specified earlier on, there will be a maximum of one element in the newly formed array - of course, there could be NO elements in the array if the search criteria was not matched, so beware of this before you try and do anything else with that empty array, like joining it back together to form a String for example!

Copy the script shown in the slide into your old c:\test4.htm file and save it as c:\test5.htm

[image: image27.wmf]23

© 2003 Martin Francis

The Document Object Model

ImagoQA

window

document

form

<script language="JavaScript" type="text/javascript">

function showValues()

{

 var name=document.forms

[

0

]

.elements

[

0

]

.value;

 var code=document.forms

[

0

]

.elements

[

1

]

.value;

 window.status="Name="+name+" and code="+code;

}

</script>

Convert the “submit” button in your code to this to activate our script:-

<input type="button" value="Check Your Values"

onclick="showValues()">

element

Things to do with Regular Expressions:
Some of the most powerful String methods use Regular Expressions.

String.match(regexp) builds an Array of substrings using the Regular Expression regexp as a parameter. This can either be a Regular Expression literal (i.e., one specified as it is used), or a reference to one created earlier. If the global g option is not specified in the Regular Expression, it will only match the first item and create an Array with one element.

String.replace(regexp, replacement) searches the String for instances of substrings matching the Regular Expression regexp, and replaces them with whatever is given as replacement. This can be either global or not, as determined by the g option.

String.search(regexp) searches the String for the FIRST instance of a substring matching the Regular Expression regexp, and returns the position within the string at which the substring starts, or -1 if no match was found. Unlike match(), the g option is ignored.

Using String Methods with Arrays:

On the previous page we created an Array containing substrings of the String a, and proceeded to display each one. Suppose we wanted to take this a stage further, and, having used the regular expression given to FIND the substrings, we only wanted to display the last letter of each NI number - perhaps this corresponds to a tax office or some such detail. The String methods just given look ideal, but we can’t use them on an Array because they are String methods. OK, so we could throw the whole thing into a loop and modify each element separately, but this is both messy and very inefficient when dealing with hundreds of items. Instead it makes much more sense to join all the Array elements together to form a String, perform the replace() method to screen out what we DON’T want, then split the String back into an Array again.

Array.join(delimiter) joins all the elements in an Array to form a string. If delimiter is specified, it is included between each element within the string. Otherwise, commas are used.

String.split(delimiter) performs the inverse action, splitting a string into an array.

Modify your existing file c:\test5.htm and save it as c:\test6.htm and try it in a web browser.

[image: image28.wmf]23

© 2003 Martin Francis

Remember this?

Sorting an Array:

As you’re beginning to see, each type of object has its own special features. One special feature of an Array is that it can be sorted by the use of the Array.sort() method. The default action for sort() is to try and convert each element in turn to a String for the purposes of the test, then to compare each pair of elements in turn Alphabetically. If the first element should appear after the second (alphabetically), the two elements are swapped. The process continues until the entire array is sorted. Because this happens at a very “low level” in programming turns - the sort itself, once activated, is carried out at very high speed in machine code - this is very much quicker than any other mechanism we could devise in discrete JavaScript to replicate the task ourselves.

So much for case-sensitive alphabetical sorting. The method provides for much more flexible criteria by allowing the programmer to supply a reference to a custom function to be used to alter the sort order.

In the first example shown in the slide, an Array of Strings is sorted alphabetically. The sort() method attempts to sort the contents as if they were text. However, if we want to sort our String elements as Numbers in true numerical order, we have to define a custom function - we called ours byNumber() - and execute the search using that function to control the order.

[image: image29.wmf]23

© 2003 Martin Francis

Sorting an array:

Sorting an Array Numerically:

<script language="

JavaScript

"

 type="text/

javascript

"

>

 function byNumber(a,b){

 return parseInt(a)-parseInt(b); }

 var a=new Array("712","1012","20");

 a.sort(byNumber); alert(a); // Result: 20,712,1012

</script>

Sorting an Array Alphanumerically:

<script language="

JavaScript

" type="text/

javascript

">

 var a=new Array("712","1012","20");

 a.sort(); alert(a); // Result: 1012,20,712

</script>

A typical form:

Forms and Elements:
An HTML document may contain one or more forms, each having elements, the contents of which can be submitted to the web server script defined in an “action” parameter contained in the <form> tag - or, as in the example shown in the slide, be read in the browser itself by using JavaScript. You could rewrite these lines to use the names of the forms and elements, which makes code easier to read, and limits problems if a second form is added to a page later on.

var name=document.forms[0].elements[0].value; var name=document.myForm.Name.value;

var code=document.forms[0].elements[1].value; var code=document.myForm.Visitor.value;
The Document Object Model:
We have used document.write("message") and window.status="message". These methods and properties belong to a special class of objects available to JavaScript programs running in web browsers called the Document Object Model, or DOM for short.

Reading form elements with JavaScript:
· Open your previous file, c:\test7.htm
· Include the showValues() function and script tags (as given in the slide above) in the document’s head section;

· Replace the HTML code for the Submit button for the one given in the slide;

· Save this file as c:\test8.htm and test it - make sure you PRESS THE BUTTON to enter.

Q:
Why didn’t the page call test.php on the web server?
A:
Because there isn’t a submit button!. However, try striking return and the form data will be

sent to the web server instead, since this is the default action for the form.

<html>

<head><title>Forms</title></head>

<body><h3>Example of a simple form</h3>

<form action="http://www.classaxe.com/home/test.php" method="GET" name="myForm"> <input type="hidden" name="Visitor" value="007">

 Name: <input type="text" name="Name" size="20">

 Pass: <input type="password" name="Password" size="20">

 Food: <select name="Select">

 <option value="Pizza" selected>I Like Pizza</option>

 <option value="Pasta">Pasta Please</option></select>

 Extras:

 <input type="checkbox" name="Checkbox[]" value="Drink"> Can of Pop

 <input type="checkbox" name="Checkbox[]" value="Fork"> Plastic Fork

 <input type="checkbox" name="Checkbox[]" value="Hat"> Party Hat

 Cheese Topping:

 <input type="radio" name="Radio" value="0" checked> (None)

 <input type="radio" name="Radio" value="Mo"> Mozzarella

 <input type="radio" name="Radio" value="Ch"> Cheddar

 <input type="radio" name="Radio" value="Sw"> Swiss

 <textarea name="Textarea" cols="40" rows="3">Comments?</textarea>

 <input type="reset" value="Clear Form">

 <input type="submit" name="Confirm" value="GO">

</form>

</body></html>

var a = prompt("Colour?","red");

var b = "#606060";

if (a.toUpperCase()=="RED")

 b="#ff0000";

else if (a.toUpperCase()=="BLUE")

 b="#00ff00";

else if (a.toUpperCase()=="GREEN")

 b="#0000ff";

else if (a.toUpperCase()=="BLACK")

 b="#000000";

document.write("Hi")

“\n”	= “new line” in alert()�“
”	= “new line” in document.write()

Increment

test

initialise

<html>

<head><title>JavaScript Variables</title></head>

<body>

<h3>String Method Tests</h3>

<script language="javascript" type="text/javascript">

 var a = "Martin was here";// The test string

 var b = new Array(); // Contains our results

 var n = 0; // Counter for array elements

 b[n++]= a.charAt(3); // "t"

 b[n++]= a.indexOf("a"); // 1

 b[n++]= a.indexOf("a",3); // 8

 b[n++]= a.lastIndexOf("a");// 8

 b[n++]= a.substring(1,3); // "ar"

 b[n++]= a.toLowerCase(); // "martin was here"

 b[n++]= a.toUpperCase(); // "MARTIN WAS HERE"

 for (var i=0;i<b.length;i++){ // loop to display results

 document.write("b[" + i + "] = " + b[i] + "
\n"); }

</script>

</body>

</html>

In JavaScript, use alert()�to display a message box

<html>

<head><title>JavaScript Variables</title></head>

<body>

<script language="JavaScript" type="text/javascript">

var a=23 ; alert(a + 12); // 35

var a=23 ; alert("" + a + 12); // 2312

var a="23"; alert(a + 12); // 2312

var a="23"; alert(parseInt(a) + 12); // 35

var a="Classaxe"; var b = a.length; // b=?

alert("The word " + a + " has " + b + " letters");

</script>

</body>

</html>

- 25 -

